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A Simple Negative Impedance Circuit with No Internal 
Bias Supplies and Good Linearity 

This communication presents a very simple and stable negative 
impedance circuit with no internal-bias supplies. The linearity is 
good over a wide operating range in spite of its simplicity. The 
characteristics of the circuit are essentially independent of tran- 
sistor parameters if the transistors have typically large betas. The 
v-i characteristic of the circuit is essentially constant from dc to 
the order of the p-cutoff frequency of the transistors. 

The configuration of the circuit is shown in Fig. 1. The two- 
transistor, three-resistor circuit has the negative impedance char- 
acteristics shown in the oscillogram of Fig. 2. The essentially piece- 
wise-linear characteristic has three regions, the positive impedance 
region I, the negative impedance region II and the saturation region 
III; In region II the value of the negative impedance is primarily 
determined by the values of the passive component in the circuit 
as explained later. The resistor R, improves the linearity but is not 
essential. The circuit can be regarded as a two-stage complementary 
dc amplifier with positive current feedback. Hence the circuit re- 
sponds to zero frequency. The feedback ratio is determined by 
R/r = 72 since the base voltage of the first transistor Qr is essentially 
constant when the two transistors operate in the active region, and 
the two-stage amplifier composed of &I and Qg has large current 
gain. As a result the circuit shows a negative impedance of -RI/n. 
This situation is better explained by Fig. 3 with the assumption 
that the transistors are idea; i.e., the common-base current gain is 
unity and the voltage between base and emitter is zero. Let us 
assume in Fig. 3 that the current i is flowing as a result of the voltage 
V applied between terminals 1 and 2. Since the common base cur- 
rent gain of transistor Qr is unity its base current should be zero. 
Hence the current i should flow through the resistor R and develop 
the voltage -Ri = --nri across the point P and the ground. This 
voltage is equal to the voltage across the resistor r since the base- 
emitter voltage of Qr is zero. Thus we have 

(i,z + i)r = -nri. (1) 

Also 

V = R,.i. (2) 
Since the common base current gain of the second transistor QZ is 
also unity, the total current flowing into the circuit is 

I = i + ic2 

= i + i(-n - 1) = -ni. 

Hence, the impedance of the circuit is 

(3) 

RN = V/I = -R,/n or -R, i. 

Note that similar relations hold when RI, R, and r are impedances 
instead of resistors. Note also that if resistor RI is replaced by an 
impedance Z, (4) indicates that the circuit may be regarded as a 
negative impedance converter with the termination impedance z 
having the conversion factor 7~. n is determined by the ratio of R 
and r, and is not necessary real. Indeed, one can design 12 to have 
the proper frequency characteristics to improve the frequency char- 
acteristics of the circuit. If the current gains are not unity but very 
close to unity, (4) becomes, 
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Fig. 1. The configuration of the simple negative impedance circuit. ’ 

HOR = ~V,‘DIV Ql = 2N706 

VER = 1 MA/‘bIV 
92 = 2N1991 

I- = 100 R 

n =5 

Fig. 2. The vi characteristics of the circuit. The circuit is essentially piecewise- 
linear, having three regions: I-the positive impedance region, II-the nag&w 

.impedsnce region and III-the saturation region. The characteristics are con- 
trolled by the termination resistor RI: from left to right RI = 6 kCl, 12 Xl and 
20 khl. The linearity is improved by adding R.: most right. R, = 10 kQ (RI = 
20 kQ). 
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F&.:3. The simplified equivalent circuit in region II. 

Equation (5) indicates that the magnitude, linearity and frequency 
characteristics of 012 is the most important factor. A more detailed 
analysis not given here shows that in order to have a good linear 
negative region and for (4) to be valid, the following conditions are 
necessary:’ 

(1) P& >> n + 1 
(2) RI/~ >> n + 1 
(3) 12 < 24 (for silicon transistors at room temperature) 

where p1 and pz are the common emitter current gain of the tran- 
sistors. The only requirement on transistor fi is condition (1) which 
is easily met. No circuit adjustments are required when the above 
conditions are satisfied. 

In region’1, both transistors are in the cutoff condition, since the 
voltage between the base and emitter of Q1 is either negative or too 
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small to induce the collector current. Hence all the current flows 
through RI, R, and r. Thus the impedance of the curcuit is positive 
and has the value of 

R, N R, + (n. + 1)~. (6) 

As the voltage I’ is increased, the voltage between the base and 
emitter of Q,, which is equal to V(n + l)r/R,, is also increased up 
to the value of Eb where the transistor &I begins to conduct current. 
The value of Eb is approximately 0.6 volts for silicon transistors at 
room temperature. This critical value of V is given by 

v,b + l)r,‘R, = E, (7) 

which is the peak voltage of the circuit. If condition (2) exists, 
this peak voltage is given by 

Ti, ‘v E,[R,/(n + 1)~1. 

The variation of the value of Eb in transistors of the same type 
is usually less than 30 mV. This means that VP is constant within 
5 per cent regardless of transistor change. Calculation shows that 
increasing p2 decreases the effective Eb slightly:’ 

(AEb),ft li -y-y = -25 y (mv). (9) 
2 2 

A 20 per cent change in p2 changes V, less than 1 per cent; doubling 
j32 changes it about -3 per cent. The experimental results showed 
that the maximum change of VP was 9 per cent with transistors 
having AEb 5 20 mV and pz from 17 to 43. Even in this case no 
significant change of RN is observed. RN is essentially constant 
when condition (1) is valid, as indicated before. The maximum 
value of V, is usually limited by the BVcEo of Qz. It was easy to 
design V, from 2 to 50 V using a 2N709 for Q1 and a 2N1991 for Q2. 

In region III, the transistors are both in the saturation region 
and the residual voltage V, is determined by the saturation char- 
acteristics of the transistor pair: 

(VE~)~~~ is about 0.7 N 0.8 volts for silicon transistors, whereas 
( ‘VCE~)~~~ is less than 0.2 volts. Hence V, is 1 volt or less. Note that 
increasing r does not increase V,. 

It should be noted that although the circuit of Fig. 1 resembles 
the practical form of current-inversion NIC given by A. I. Larky,* 
there is an important difference from it. The circuit given here 
satisfies the dc bias conditions by itself, hence operates down to 
dc with no additional component or internal bias supplies. Larky’s 
practical form requires addition components or bias supplies for 
proper operation. 

Summarizing, wide-range linear and stable negative impedance 
characteristics are achieved. Moreover, these characteristics are 
controlled by the choice of a resistor and are insensitive to tran- 
sistor parameters. For example, in Fig. 2 a family of curves corre- 
sponding to different values of RI are shown, demonstrating that 
the circuit is operating as a negative impedance converter according 
to (4), (6), and (8). The circuit is simple and no internal bias sup- 
plies or circuit adjustments are required. The negative impedance 
region was useful from dc to several hundred kilocycles, and the 
linearity was better than fl per cent using 50 per cent of the nega- 
tive resistance region. The linearity is improved by adding R. as 
shown in Fig. 2. The circuit has been successfully used as a negative 
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resistance amplifier at 3 kc/s with a second harmonic content less 
than -40 dB, as a Wien-bridge type sine-wave oscillator at 1.6 kc/s 
with distortion less than -30 dB, as a relaxation oscillator and as 
a logic switching circuit element.1 
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Comments on “Fldw-Graph Evaluation of the Character- 
istic Polynomial of a Matrix” 

In his communication, MiliEr proposes a novel and ingenious pro- 
cedure for evaluating the coefficients of the characteristic poly- 
nomial of a square matrix A. A particular advantage of this method 
lies in the fact that it does not require the expansion of a large 
number of determinants. 

It is our purpose here to point out a method due to DanilevskyZ 
that is simpler and easier to program for machine computation. 

If a sequence of similarity transformations BAB-1 is performed 
upon the mat,rix A, the resultant matrix after each transformation 
will have the same eigenvalues and hence the same characteristic 
polynomial as A. The trick is to choose the matrix B in each trans- 
formation such that one ultimately obtains a matrix of the Frobenius 
canonical form, viz. 

r Pl pa . . . P”-1 P-1 

Then p(X) = (-l),[,,, - plXn 1 - p2Xn * . . . - p,,]. 
The matrix B that produces the desired transformation is given by 

r 
0 1 . . . 0 0 I 

-----.------------------ 
--a,, -a,? 1 --an ’ - . . . - - 
an.n-l l~,,,-~ an.n-l an.n-l 

L 0 0 ... 0 11 
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