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The Electromagnetic Fields of Elliptical Torus Knots
Douglas H. Werner, Senior Member, IEEE, D. M. Jones, and P. L. Werner

Abstract—The electromagnetic radiation and scattering prop-
erties of thin perfectly conducting knotted wires are investigated
in this paper. A particular class of knots, which we call elliptical
torus knots, are introduced for the purposes of this investigation.
These knots derive their name from the fact that they may be con-
structed on the surface of a virtual torus which has an elliptical
cross section. The parameterizations which describe the curves of
these knots are more general than any which have been considered
in previous studies and, therefore, provide more flexibility in the
design of knotted wire scatterers. A moment method technique is
applied to model the backscattering from an elliptical trefoil knot
as a function of frequency, polarization, and incidence angle.

Index Terms—Electromagnetic radiation and scattering, knot
electrodynamics, knotted media, torus knots.

I. INTRODUCTION

T HE ELECTROMAGNETIC scattering properties of
perfectly conducting thin knotted wires were first studied

by Manuar and Jaggard [1]–[3]. The primary objective of
this work was to compare the backscatter from a simple knot
(the trefoil) to that produced by a simple related unknot (the
untrefoil). It was found that a remarkable difference of 25–30
orders of magnitude existed between trefoils and untrefoils in
the copolarized backscattering of incident circularly polarized
plane waves. This difference in the copolarized backscatter
was initially attributed to the topological properties of the
knots [2]. However, by considering the backscattering from
asymmetric trefoils called morphs, Manuar and Jaggard [4]
were able to later demonstrate the dominant role that symmetry
plays in producing this effect. This conclusion is supported
by the earlier theoretical treatment of the problem where the
backscattering from a target with a three-fold or higher order
rotation axis has been considered [5]–[7].

The interaction of electromagnetic waves with knotted media,
i.e., composite structures with inclusions in the form of simple
knots, has been considered in [8]. A simple model for the fre-
quency dispersion of the material parameters associated with
knotted media was also suggested in [8]. More recently, a novel
technique for designing polarization-selective surfaces (PSSs)
using trefoil knot elements was proposed in [9].

The work reported in [10] and [11] represents the first
attempt to establish a rigorous mathematical foundation from
which analysis techniques may be developed and applied
toward the study of knot electrodynamics problems. The
analysis methodology presented in [10] and [11] was illustrated
by considering a special class of knots, known as -torus
knots, which have interesting topological as well as electro-
magnetic properties. It was demonstrated that the well-known
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trefoil originally studied by Manuar and Jaggard [1]–[4] is
one important example of a -torus knot. A useful set
of parametric representations was developed in [10] and [11]
for this particular family of knots by making use of the fact
that they may be constructed on the surface of a standard
circular torus in . These parameterizations were then used
in combination with Maxwell’s equations to derive the vector
potential and corresponding field expressions which describe
the radiation and scattering of electromagnetic waves from cir-
cular -torus knots. A new electric field integral equation
(EFIE) which is well suited for the analysis of thin toroidally
knotted wires was also derived in [10] and [11].

The constructions considered in [10] and [11] were restricted
to knots which reside on the surface of a torus that has a cir-
cular cross section. This paper extends the ideas presented in
[10] and [11] by developing a more general set of parameteri-
zations which are valid not only for circular but also for ellip-
tical -torus knots. The parametric representations for el-
liptical -torus knots are presented in Section II. It is also
demonstrated in Section II how the parameterizations for cir-
cular torus knots introduced in [10] and [11] may be obtained as
a special case of the more general elliptical torus knot parame-
terizations. These parameterizations are then used in Section III
to derive expressions for the vector potential and electromag-
netic fields of elliptical -torus knots made from thin per-
fectly conducting wire. In Section IV, various closed-form ex-
pressions are derived for the radiation integrals associated with
electrically small elliptical -torus knots. Also pointed out
in Section IV is the interesting fact that the circular loop as well
as the linear dipole geometries can both be obtained as degen-
erate cases of the elliptical torus knot parameterizations. Finally,
some examples illustrating the electromagnetic scattering prop-
erties of elliptical trefoils are considered in Section V.

II. ELLIPTICAL TORUSKNOTS

In this section, we introduce a useful set of parametric repre-
sentations for the family of elliptical -torus knots. These
knots reside on the surface of a torus which has, in general, an
elliptical cross section. The geometry for such an elliptical torus
is illustrated in Fig. 1. Suppose we let denote the boundary or
surface of the elliptical torus shown in Fig. 1, then the Cartesian
coordinates for any point may be represented by

(1a)

(1b)

(1c)

where and .
Torus knots are classified by the integersand which are

relatively prime [12], [13]. The numbers and tell us how
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Fig. 1. Geometrical configuration for a torus with an elliptical cross section:
(a) the top view and (b) a side view.

many times a particular knot traverses the torus in the longitu-
dinal and meridional directions, respectively. The class of knots
which live on the surface of the elliptical torus described by
(1a)–(1c) can be shown to have parameterizations given by

(2a)

(2b)

(2c)

where . It is of interest to note here that when
the parameterizations for elliptical torus knots given in

(2a)–(2c) will reduce to those considered previously in [10] and
[11] for circular torus knots. Hence, from a geometrical point of
view, circular torus knots may be considered as a special case
of the more general elliptical torus knots, even though topo-
logically speaking they are equivalent. This is a subtle yet im-
portant distinction since the introduction of an additional de-
gree of freedom through the parameterallows the electro-
magnetic characteristics to be studied for a much wider class
of knot geometries. Three different geometries for a (2, 3)-torus
knot (trefoil) are compared in Fig. 2. These three knotted curves
were generated from the parameterizations given in (2a)–(2c) by
choosing , , and . The additional flexibility

Fig. 2. A comparison of three different trefoil knot geometries generated by
choosing (a)c = b=4, (b) c = b, and (c)c = 4b for a fixed value ofa.

provided by elliptical torus knots is also important from a prac-
tical point of view. For instance, they offer more control over the
resulting electromagnetic properties when used in the design of
knotted media and PSS.

III. ELECTROMAGNETIC FIELDS

A procedure for deriving electromagnetic field expressions
which correspond to knotted wire antennas or scatterers was
first introduced in [10], [11]. However, the vector potential and
field expressions derived in [11] are restricted to the family of

-torus knots with circular cross section. In this section, the
results reported in [10], [11] are generalized to include knots
which reside on the surface of a torus whose cross section is
elliptical.

The derivation of these generalized field expressions begins
by considering the vector potential representation for an arbi-
trarily shaped wire with an electric current, which is given by
[14]

(3a)

where

(3b)

Vector potential expressions for the class of elliptical
-torus knots may be derived directly from (3a) and (3b)

by employing the parameterizations introduced in (2a)–(2c).
This approach requires that the knot parameterizations be repre-
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sented in terms of the source coordinates as

(4a)

(4b)

(4c)

The next step requires finding a suitable expression for the
incremental length element which applies to the particular
family of elliptical -torus knots. This is accomplished by
making use of the knot parameterizations given in (4a)–(4c) to
obtain (5), shown at the bottom of the page. This suggests that
the arclength of an elliptical torus knot may be obtained di-
rectly from (5) by integrating over the curve of the knot. In other
words, integrating both sides of (5) over the appropriate limits
leads to a useful formula for arclength given by [15]

(6)

At this stage in the development, we seek to derive a specialized
integral representation for the elliptical -torus knot vector
potential by using (3a) and (3b) in conjunction with (4a)–(4c)
and (5). This may be accomplished by following a similar pro-
cedure to that outlined in [11]. The resulting expressions for the
three components of the vector potential, transformed to spher-
ical coordinates, are given below:

(7a)

(7b)

(7c)

where represents the current distribution on the surface
of the knotted wire. These expressions for the vector potential
are valid everywhere, including in the near-zone of the knots.
However, the approximation

(8a)

where

(8b)

(8c)

may be used to find simplified far-zone vector potential repre-
sentations. In particular, by substituting (8a) into (7b) and (7c)
we obtain the following far-zone approximations for and

:

(9a)

(9b)

Finally, far-zone expressions for the electromagnetic fields pro-
duced by elliptical torus knots may be obtained directly from
(9a) and (9b) by making use of the following well-known rela-

(5)
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tionships [14]:

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

There are several potentially useful applications of the gen-
eral electromagnetic field expressions for elliptical torus knots
given in (9a)–(9b) and (10a)–(10f) above. For instance, the scat-
tering matrix of the elliptical torus could be easily obtained from
these field representations. The scattering matrix is defined by

(11)

where the elements can be found from the geometric and ma-
terial properties of the scattering medium [16]. This type of
analysis could be useful for characterizing the anisotropy corre-
sponding to a particular torus knot by investigating the proper-
ties of the matrix elements and . A similar type of approach
could be followed in order to determine the related Stokes pa-
rameters [16].

IV. SPECIAL CASES

A. Circular Torus Knots

The first special case that will be considered involves knots
which are formed by winding a piece of wire around the surface
of a virtual circular torus. The circular torus knots can be thought
of as resulting from a degenerate form of the elliptical torus
knots, namely, when . In this case, the expressions for
the vector potential given in (7a)–(7c) reduce to

(12a)

(12b)

(12c)

which are in agreement with the results reported in [11]. Like-
wise, approximate far-zone expressions for the vector poten-
tial components associated with circular torus knots may be ob-
tained by setting in (9a) and (9b).

B. Small-Knot Approximation (and are Functions of )

Suppose we assume thatand are proportional to such
that and where . In this case, (8b)
and (8c) may be written as

(13)
When is small enough, (13) can be approximated by

(14)

Another approximation which may be made in the case of elec-
trically small torus knots is that the current distribution on these
knots will be uniform. Therefore, by setting where

is a constant, the far-zone vector potential expressions given
in (9a) and (9b) may be reduced to the form

(15a)
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(15b)

Finally, simple closed-form representations for the fields pro-
duced by electrically small torus knots may be found by sub-
stituting (14) into (15a) and (15b) and evaluating the required
integrals.

The general far-zone expressions presented in this section are
valid for all values of and , with the exception of the two
special cases when and . For this reason, the
general expressions given below hold for most cases of practical
interest. It can be shown that the general form of the small-knot
far-zone vector potential is

(16a)

(16b)

Using (10a)–(10f), the far-field representations for these small
knots can then be determined to be

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

We note here the fact that the far-zone representations given
in (17a)–(17f) are independent ofor . Hence, under these
conditions, the far-zone expressions for the elliptical torus knots
are the same as those derived for the circular torus knots in [11].
It was shown in [11] that (17a)–(17f) are equivalent to the far
field that would be produced by an electrically small loop with
an effective radius and number of turns given by

(18a)

(18b)

C. Small-Knot Approximation (is Independent of and )

The next special case that will be considered is that in which
the horizontal radii and of the torus are small in comparison
to the vertical radius. In this instance, we letbe proportional
to such that where . We also make

the assumption thatis independent of both and . Hence, for
sufficiently small values of , the following approximation for
(8b) and (8c) can be justified:

(19)

Substituting (19) into (15a) and (15b) and evaluating the re-
quired integrals leads to convenient closed-form expressions for

and . The resulting expressions for the general case as
well as a special case of interest are summarized in the following
two sections.

1) General Case ( , and
): The general expressions for the far-zone vector potential

and fields presented in this section are valid for the majority
of possible torus knot configurations. It can be shown that the
general form of the far-zone vector potential components
and are

(20a)

(20b)

where (20c)

These expressions hold provided , , and
where . Far-zone representations for

the electromagnetic fields in the general case may be obtained
directly from (20a) and (20b) by making use of (10a)–(10f). The
resulting far-field expressions are

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

2) Special Case When : The closed-form
expressions for the vector potential in this case where

and are given by

(22a)
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Fig. 3. The geometry for a trefoil formed by a (3, 2)-torus knot.

(22b)

and the corresponding far-field representations are

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

The geometry for the special case in which and
(i.e., ) is illustrated in Fig. 3. It can easily be seen
that the (3, 2)-torus knot shown in Fig. 3 is a trefoil. We make
the observation here that even though the (2, 3)-torus knot and
the (3, 2)-torus knot are topologically equivalent, they do not
produce the same radiated or scattered fields. This can be seen
by comparing (21a)–(21f) with to (23a)–(23f) with
and .

D. Circular Loop and Linear Dipole

1) Circular Loop: For the special case when and
, the torus knot parameterizations defined in (2a)–(2c)

describe a circular loop of radius. Hence, the general vector
potential expressions for the -torus knots derived in
(7a)–(7c) will reduce to the well-known classical results for the
circular loop antenna given by [17]

(24a)

(24b)

(24c)

where

(24d)

2) Linear Dipole: In addition to the circular loop, the linear
dipole can also be obtained as a degenerate case of the elliptical
torus knot parameterizations. To demonstrate this, suppose we
let , then the expressions for the vector potential
components given in (7a)–(7c) reduce to

(25a)

(25b)

(25c)

By making the change of variables

(26a)

(26b)

with and , (25a) and (25b) may be written
as

(27a)

(27b)
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Fig. 4. Top and side views of an elliptical (2, 3)-torus knot (i.e., a trefoil).

Transforming from spherical coordinates to cylindrical coordi-
nates yields

(28a)

where

(28b)

(28c)

This is the well-known classical result for the vector potential
of a -directed linear dipole of length [14].

V. RESULTS

Fig. 4 shows a top and side view of an elliptical trefoil knot.
Top and side views of a piecewise-linear thin-wire model of
this trefoil have also been included for visualization purposes in
Fig. 5. The trefoil is assumed to be constructed from perfectly
conducting wire with an arclength of 41.416 mm and a radius
of mm. The parameters which describe this knot
were chosen such that , , , and .

A procedure for calculating the scattering cross section of thin
knotted wires was outlined in [11]. This procedure makes use of
the well-known equation for scattering cross section given by

(29)

where and represent the incident and scattered electric
fields, respectively. Suppose we consider the trefoil knot shown

Fig. 5. Top and side views of a thin-wire method of moments model for the
elliptical trefoil shown in Fig. 4.

in Figs. 4 and 5. A linearly polarized plane wave with an inten-
sity of 1 V/m is assumed to be incident on the knot. The cor-
responding scattering field is determined using a rigorous nu-
merical analysis procedure based on the method of moments.
The piecewire linear segmentation used to construct the method
of moments model of the elliptical trefoil knot is clearly visible
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Fig. 6. Backscatter cross section versus frequency for the elliptical (2, 3)-torus knot illustrated in Figs. 4 and 5. A linearly polarized plane wave is assumed to be
incident on the knot traveling in the (a) positivez direction with the electric field parallel to thex-axis, (b) positivez direction with the electric field parallel to
they-axis, (c) positivey direction with the electric field parallel to thex-axis, (d) positivey direction with the electric field parallel to thez-axis, (e) positivex
direction with the electric field parallel to they-axis, and (f) positivex direction with the electric field parallel to thez-axis.

in Fig. 5. Fig. 6 contains several plots which illustrate how the
backscatter cross section of this knot depends on frequency, po-

larization, and angle of incidence. An inspection of the plots
shown in Fig. 6 reinforces earlier observations made in [11]
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Fig. 7. Magnitude of the backscattered field in V/m versus frequency for an elliptical (2, 3)-torus knot with an arclength of 1.5 m. A linearly polarized plan wave
is assumed to be incident on the knot traveling in the positivez direction with the electric field parallel to thex- or y-axis.

Fig. 8. Relative phase of the backscattered field in degrees versus frequency for an elliptical (2, 3)-torus knot with an arclength of 1.5 m. A linearlypolarized
plane wave is assumed to be incident on the knot traveling in the positivez direction with the electric field parallel to thex- or y-axis.

which suggested that trefoil knots experience a strong field cou-
pling for all possible polarizations and angles of incidence.

We next compare the on-axis backscattering characteristics
of an elliptical (2, 3)-torus knot with those of a circular (2,
3)-torus knot that has an equivalent arc length of 1.5 m. Figs. 7
and 8 show the magnitude and phase, respectively, of the scat-
tered field as a function of frequency produced by the elliptical
trefoil. On the other hand, Figs. 9 and 10 show the same set
of plots for the corresponding circular trefoil. An inspection of
these plots reveals a particularly interesting feature in the phase
response that is characteristic of the scattered field produced by

(2, 3)-torus knots. Namely, there exists a region above the first
resonance where the phase of the backscattered field with re-
spect to the incident field is very close to zero degrees. This
is particularly true of the elliptical (2, 3)-torus knot, where the
relative phase remains close to zero degrees over a fairly wide
bandwidth, ranging from about 175 MHz to at least 475 MHz
(see Fig. 8). This suggests that elliptical torus knots with this
property may also have application to the synthesis of broad-
band artificial magnetic media [18], [19].

One of the most important advantages of elliptical torus knots
is that their geometry can be controlled in such a way that they
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Fig. 9. Magnitude of the backscattered field in V/m versus frequency for a circular (2, 3)-torus knot with an arclength of 1.5 m. A linearly polarized plane wave
is assumed to be incident on the knot traveling in the positivez direction with the electric field parallel to thex- or y-axis.

Fig. 10. Relative phase of the backscattered field in degrees versus frequency for a circular (2, 3)-torus knot with an arclength of 1.5 m. A linearly polarized plane
wave is assumed to be incident on the knot traveling in the positivez direction with the electric field parallel to thex- or y- axis.

behave more like a loop in one extreme and more like a dipole
in the other extreme. Hence, depending upon the application, a
proper balance between the loop and dipole characteristics of a
particular elliptical torus knot presumably could be found. This
kind of flexibility is not possible with the circular torus knots
considered in [11], which can be made to have radiation and
scattering characteristics close to a loop, but not a dipole.

Finally, we note that up to this point we have primarily fo-
cused on how the scattering from torus knots is affected by their
geometrical structure. However, it may also be of interest to con-

sider the relationship between the topology of the knots and the
corresponding scattered fields. One approach for doing this has
been suggested in [20], where structures based on toroidal links
are introduced for the purpose of emphasizing topological rela-
tionships over geometrical ones.

VI. CONCLUSION

A useful set of parameterizations were introduced in this
paper for elliptical -torus knots. This family of knots
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derive their name from the fact that they reside on the sur-
face of a torus which has an elliptical cross section. These
parameterizations allow more flexibility in controlling the
shape of the knots when compared with those previously
considered in [10] and [11]. In fact, this paper demonstrates
that the parameterizations for circular torus knots originally
introduced in [10] and [11] are actually a special case of the
more general elliptical torus knot parameterizations. Near-zone
as well as far-zone expressions were derived for the vector
potential and electromagnetic fields produced by elliptical

-torus knots comprised of thin perfectly conducting wire.
Several convenient closed-form expressions were found for
the far fields of electrically small elliptical torus knots. It was
also shown that the circular loop as well as the linear dipole
geometries may both be obtained as degenerate forms of the
parametric representations for elliptical torus knots. Finally, a
rigorous numerical modeling technique based on the method
of moments was used to evaluate the scattering properties of
several elliptical torus knots.

APPENDIX

In this appendix, a methodology is presented for evaluating
integrals of the type

(30)

where

and (31)

(32)

(33)

(34)

These integrals are encountered in the process of deriving the
far-zone representations for the vector potential components

and considered in Section IV-C. The first step toward
finding a closed-form solution to (30) is to recognize that since

and are real valued quantities (i.e.,, ), we may write

(35)

Next, we make use of the generating function for Bessel func-
tions [21]

(36)

Setting in (36) gives

(37)

Multiplying both sides of (37) by and integrating with re-
spect to leads to

(38)

From (35) and (38), it follows that

(39)

Finally, by substituting the appropriate values of and
into (39), we arrive at

.
(40)

A closed-form solution to the related integrals

(41)

may be obtained directly from (40) as

.
(42)
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