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The Electromagnetic Fields of Elliptical Torus Knots

Douglas H. WernerSenior Member, IEEED. M. Jones, and P. L. Werner

Abstract—The electromagnetic radiation and scattering prop- trefoil originally studied by Manuar and Jaggard [1]-[4] is
erties of thin perfectly conducting knotted wires are investigated one important example of &, q)-torus knot. A useful set
in this paper. A particular class of knots, which we call elliptical of parametric representations was developed in [10] and [11]
torus knots, are introduced for the purposes of this investigation. - . . .
These knots derive their name from the fact that they may be con- for this particular family of knots by making use of the fact
structed on the surface of a virtual torus which has an elliptical that they may be constructed on the surface of a standard
cross section. The parameterizations which describe the curves of circular torus inR®. These parameterizations were then used
these knots are more general than any which have been consideredin combination with Maxwell’s equations to derive the vector
in previous studies and, therefore, provide more flexibility in the potential and corresponding field expressions which describe

design of knotted wire scatterers. A moment method technique is th diati d tteri f elect fi f .
applied to model the backscattering from an elliptical trefoil knot ('€ fadialion and scatering ot electromagnetic waves from cir-

as a function of frequency, polarization, and incidence angle. cular (p, g)-torus knots. A new electric field integral equation

Index Terms—Electromagnetic radiation and scattering, knot (EFIE) Wh_iCh is well SUitEd_ for t_he analysis of thin toroidally
electrodynamics, knotted media, torus knots. knotted wires was also derived in [10] and [11].

The constructions considered in [10] and [11] were restricted
to knots which reside on the surface of a torus that has a cir-
. INTRODUCTION cular cross section. This paper extends the ideas presented in
HE ELECTROMAGNETIC scattering properties of[10] and [11] by developing a more general set of parameteri-
T perfectly conducting thin knotted wires were first studied@ations which are valid not only for circular but also for ellip-
by Manuar and Jaggard [1]-[3]. The primary objective dical (p, ¢)-torus knots. The parametric representations for el-
this work was to compare the backscatter from a simple knlétical (p, g)-torus knots are presented in Section Il. It is also
(the trefoil) to that produced by a simple related unknot (tHéemonstrated in Section Il how the parameterizations for cir-
untrefoil). It was found that a remarkable difference of 25-3gular torus knots introduced in [10] and [11] may be obtained as
orders of magnitude existed between trefoils and untrefoils @special case of the more general elliptical torus knot parame-
the copolarized backscattering of incident circularly polarize@rizations. These parameterizations are then used in Section IlI
plane waves. This difference in the copolarized backscatterderive expressions for the vector potential and electromag-
was initially attributed to the topological properties of théetic fields of elliptical(p, ¢)-torus knots made from thin per-
knots [2]. However, by considering the backscattering frofgctly conducting wire. In Section 1V, various closed-form ex-
asymmetric trefoils called morphs, Manuar and Jaggard [@]essions are derived for the radiation integrals associated with
were able to later demonstrate the dominant role that symmegigctrically small ellipticalp, ¢)-torus knots. Also pointed out
plays in producing this effect. This conclusion is supportéa Section IV is the interesting fact that the circular loop as well
by the earlier theoretical treatment of the problem where tiéé the linear dipole geometries can both be obtained as degen-
backscattering from a target with a three-fold or higher ordéfate cases of the elliptical torus knot parameterizations. Finally,
rotation axis has been considered [5]-[7]. some examples illustrating the electromagnetic scattering prop-
The interaction of electromagnetic waves with knotted medi@rties of elliptical trefoils are considered in Section V.
i.e., composite structures with inclusions in the form of simple
knots, has been considered in [8]. A simple model for the fre- Il. ELLIPTICAL TORUSKNOTS
quency dispersion of the material parameters associated with, this section, we introduce a useful set of parametric repre-
knotted media was also suggested in [8]. More recently, & n0Wltations for the family of ellipticalp, ¢)-torus knots. These
technique for designing polarization-selective surfaces (PSRghis reside on the surface of a torus which has, in general, an
using trefoil knot elements was proposed in [9]. _ elliptical cross section. The geometry for such an elliptical torus
The work reported in [10] and [11] represents the firskjjystrated in Fig. 1. Suppose we 2§ denote the boundary or
attempt to establish a rigorous mathematical foundation frogyrface of the elliptical torus shown in Fig. 1, then the Cartesian

which analysis techniques may be developed and app”@@ordinatesforany poirftz, y, z) € &S may be represented by
toward the study of knot electrodynamics problems. The i

analysis methodology presented in [10] and [11] was illustrated z =(a+bcosy)cosep (1a)
by considering a special class of knots, knowrn(asg)-torus

. . . . =(a+ bcos)sin 1b
knots, which have interesting topological as well as electro- v =( ¥)sing (1b)
magnetic properties. It was demonstrated that the well-known z =csiny (1c)
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Fig. 2. A comparison of three different trefoil knot geometries generated by
choosing (a)y = b/4, (b) ¢ = b, and (c)c = 4b for a fixed value ofa.

(b)
. . ) ) ) - ) rprovided by elliptical torus knots is also important from a prac-
Fig. 1. Geometrical configuration for a torus with an elliptical cross section: . . .
(a) the top view and (b) a side view. tical point of view. For instance, they offer more control over the
resulting electromagnetic properties when used in the design of

. i ] _knotted media and PSS.
many times a particular knot traverses the torus in the longitu-

dinal and meridional directions, respectively. The class of knots lll. ELECTROMAGNETIC FIELDS
which live on the surface of the elliptical torus described by

(1a)—(1c) can be shown to have parameterizations given by =~ A procedure for deriving electromagnetic field expressions
which correspond to knotted wire antennas or scatterers was

first introduced in [10], [11]. However, the vector potential and

@ = (@ +beos(y +gs)) cos(ps) (23)  field expressions derived in [11] are restricted to the family of
y = (a+bcos(y) + ¢s)) sin(ps) (2b) (p, g)-torus knots with circular cross section. In this section, the
_ results reported in [10], [11] are generalized to include knots
z =csin(y + ¢s) (2¢)  which reside on the surface of a torus whose cross section is
elliptical.

where0 < s < 2r. It is of interest to note here that when The derivation of these generalized field expressions begins

¢ = b the parameterizations for elliptical torus knots given iRY considering the vector potential representation for an arbi-
(2a)—(2c) will reduce to those considered previously in [10] arffgrily shaped wire with an electric currefitwhich is given by

[11] for circular torus knots. Hence, from a geometrical point di4l
view, circular torus knots may be considered as a special case

of the more general elliptical torus knots, even though topo- g(% Yy, 2) = L3 / _f(a;Q v, Z/)e on dr (3a)
logically speaking they are equivalent. This is a subtle yet im- dr Je

portant distinction since the introduction of an additional devhere

gree of freedom through the parameteallows the electro- R=\/(z -2+ (y—vy)2+(z— )2 (3b)

magnetic characteristics to be studied for a much wider class

of knot geometries. Three different geometries for a (2, 3)-torector potential expressions for the class of elliptical
knot (trefoil) are compared in Fig. 2. These three knotted curvés ¢)-torus knots may be derived directly from (3a) and (3b)
were generated from the parameterizations given in (2a)—(2c)liby employing the parameterizations introduced in (2a)—(2c).
choosinge = b/4, ¢ = b, andc = 4b. The additional flexibility This approach requires that the knot parameterizations be repre-
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sented in terms of the source coordinates as Ay(r, 8, ) = 4ﬁ

z' = (a+beos(y + gs')) cos(ps’) (4a) "

. Is / b /
V= (a+boos(y+a)sinps)  (4b) o[ 1) orrosty-rad)
. —jBR 27
7' =esin(tp 4 q4'). (4c) -cos(p — ps’) £ 7 ds' + qb/ I(s)
The next step requires finding a suitable expression for the _j;R

incremental length elemer’ which applies to the particular - sin(¢) + ¢s') sin(p _psf)c : ds’}
family of elliptical (p, ¢)-torus knots. This is accomplished by R
making use of the knot parameterizations given in (4a)—(4c) to (7c)

obtain (5), shown at the bottom of the page. This suggests tWHereI (s')

h I H of lintical " 4 ; represents the current distribution on the surface
the arclengtit. of an elliptical torus knot may be obtained di-¢ 1o notted wire. These expressions for the vector potential
rectly from (5) by integrating over the curve of the knot. In othex o \5jid everywhere, including in the near-zone of the knots.
words, integrating both sides of (5) over the appropriate limi{§,, ever the approximation

leads to a useful formula for arclengih,, given by [15] ) )
e—j,@R e—],@r

Ly, W R ~ , INCY (8a)
=2 / \/pQ(a +beosu)? + 2(b?sin®u + 2 cos?u)du.  where
0 (6) F(s’) — dBlatb cos(+qs’)) cos(e—ps’) sin 6+c sin(w+qs’) cos 6]
At this stage in the development, we seek to derive a specialized (8b)
integral representation for the elliptidal, ¢)-torus knot vector - \/m (8¢)

potential by using (3a) and (3b) in conjunction with (4a)—(4c)

and (5). This may be accomplished by following a similar prgnay be used to find simplified far-zone vector potential repre-
cedure to that outlined in [11]. The resulting expressions for tigentations. In particular, by substituting (8a) into (7b) and (7c)
three components of the vector potential, transformed to sphég obtain the following far-zone approximations fdg and

ical coordinates, are given below: A
- _ psing cosf ¢—I°"
AT(77 97 (p) o 47(- Ae(/r? 97 <p) ~ u4 .
o 5T
{r ) 2@t a0 A [ 1 @t voosti 4 05)
. . eIR o / 0 .
-sin(p — ps') - ds' — qb/o I,(s") -sin(p — ps')D(s') ds’ — qb/ L(s)
: ’ ’ e IR ’ ’
- sin(p 4 gs') cos(p — ps’) 7 ds } - sin(4 + gs') cos(p — ps' )T(s) ds’}
pcosd o / / sin@ e 967 2
o {qc/o I;(s") cos(tp + qs) — N47r . {qc/ I,(s") cos(vy + gs5')
cIBR 0
] __ pcost
Ag(r, 0, ¢) ==~ e—ipr

I
A‘P(Ta 9, <P) ~ E r

27
@/ L(s") (a+ beos() + g¢))
0
c—JBR 27
ds' — qb/ I(s)
0

o JOR
- sin(zp + gs') cos(p — ps’) 7 ds’}
B phsin @

27
{qc/ I;(s") cos(vp + qs') _ . s
4r 0 Finally, far-zone expressions for the electromagnetic fields pro-
e IR s’ 7b duced by elliptical torus knots may be obtained directly from
"TmrR * (7b) (9a) and (9b) by making use of the following well-known rela-

-&Ahuww+MMWWw>

-sin(p — ps’) 27
-cos(p — psI'(s') ds’ + qb/ 1,(s"
0

- sin(1p + gs') sin(p — ps"I'(s") ds’} .(9b)

dl' = \/pQ(a + beos( + q5'))2 + ¢2(B2 sin® (3 + gs') 4 2 cos2(¢p + qs')) ds’. (5)
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[ i ' cosf
tionships [14]: Ag(r, 8, ¢) = K -
27
k. =0 (10a) . {p/ I,(s) (a+ beos(y) + ¢s'))
0
By =~ —jwA 10b —JBR 2
’ e (10b) -sin(p — ps’) ¢ ds' — qb/ I,(s"
E, =—jwA, (10c) e_ng
. , , ,
H. ~0 (10d) - sin(y) + ¢s’) cos(p — ps’) 7 ds }
. pusin @ 2w
Hy %jg A, = & (10e) - {qb/ I,(s") cos(p + qs')
n n a 0
E I
H, %—j% Ay = 70 (10f) § g s } (12b)
A‘P(Tv 97 QO) = 4_
7r

There are several potentially useful applications of the gen-
eral electromagnetic field expressions for elliptical torus knots

- {p / L) (at beos(i £ g57)

given in (9a)—(9b) and (10a)—(10f) above. For instance, the scat-
tering matrix of the elliptical torus could be easily obtained from
these field representations. The scattering matrix is defined by

JBR 2w
ds' + qb/ I(s)
R 0

-cos(p — ps’)

. N ’ e IR ds’
<Ehs> - R <51 S2> <Ehi> a sin(y + ¢s’) sin(p — ps’) s }
Es) 1 Sz Sa ) \ Eu (12c)
which are in agreement with the results reported in [11]. Like-

where the elements can be found from the geometric and m@se, approximate far-zone expressions for the vector poten-
terial properties of the scattering medium [16]. This type qfal components associated with circular torus knots may be ob-
analysis could be useful for characterizing the anisotropy corkgined by setting = b in (9a) and (9b).
sponding to a particular torus knot by investigating the proper-
ties of the matrix elements; ands5s. A similar type of approach B. Small-Knot Approximatiorb(andc are Functions of:)
could be followed in order to determine the related Stokes pa-

Suppose we assume thaand ¢ are proportional ta: such
rameters [16]. PP ¢ Prop

thatb = «a ande = ya where0 < « < 1/2. In this case, (8b)

and (8c) may be written as
IV. SPECIAL CASES

F(S/) _ ej,@a[(l+oz cos(y+qs’)) cos(ep—ps’) sin 6+ sin(+qs’) cos ¢] )
(13)

The first special case that will be considered involves kno\t’%h . I h (13 b imated b
which are formed by winding a piece of wire around the surface ena is small enough, (13) can be approximated by

ofavirtual circular torus. The circular torus knots can be thought (') ~ 1 + j8a (1 4 « cos(¢ + ¢s')) cos(¢ — ps') sin 8
of as resulting from a degenerate form of the elliptical torus + jBaysin( + gs') cos d (14)
knots, namely, wherm = b. In this case, the expressions for Py 4 )
the vector potential given in (7a)—(7c) reduce to Another approximation which may be made in the case of elec-
trically small torus knots is that the current distribution on these
psin f knots will be uniform. Therefore, by setting(s’) = 1o where
47 I is a constant, the far-zone vector potential expressions given

o in (9a) and (9b) may be reduced to the form
- {p | 1) (e oot a5)
0

A. Circular Torus Knots

A?’(/’)? 97 (p) =

palycosf e 907

A@(Tv 97 QO) - .
o-iBR o 47 ) T
. i / I ! Q
sin(p — ps’) R ds qb/o I(s) . {p/ (1 + acos(y + gs'))
0
48R . g — ps' Nds' —
- sin(1) + gs') cos(p — ps’)e 7 ds’} sinyp = ps)I(s') ds” — go

27
. / sin(y) + qs’) cos(p — ps )[(s) ds/}
0

pweos ) o
palysing e 7%

A7

27
{qb/o I, (s") cos(p + qs')

c—IBR
: ds’} (12a)

47 T

27
. {qry/o cos(tp + qs )I'(s") ds’} (15a)
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Au(r, 0, ) = paly e=9PT the assumption thatis independent of botta andb. Hence, for
AR T sufficiently small values of;, the following approximation for

27 i
' {p/ (1 + avcos( + 5')) (8b) and (8c) can be justified:
0

N 27 I'(s") = [1+jBa(l+ acos( + qs')) cos(ep — ps’) sin 4]
-cos(p — psHT'(s") ds" + qa/o . gifesin(¥+as’) cos (19)
- sin(tp + qs') sin(p — ps)HI'(s") ds’} Substituting (19) into (15a) and (15b) and evaluating the re-
(15b) quired integrals leads to convenient closed-form expressions for

As and A,. The resulting expressions for the general case as

Finally, simple closed-form representations for the fields pr(\j\zell as a.special case of interest are summarized in the following

duced by electrically small torus knots may be found by sub¥0 Sections.

stituting (14) into (15a) and (15b) and evaluating the required 1) General Casey/q # 2n,p/q # 2n—1andp/q # (2n—

integrals. 1)/2): The general expressions for the far-zone vector potential
The general far-zone expressions presented in this sectiongfté fields presented in this section are valid for the majority

valid for all values ofp and ¢, with the exception of the two of possible torus knot configurations. It can be shown that the

special cases whem = ¢ andp = 2q. For this reason, the general form of the far-zone vector potential componetys

general expressions given below hold for most cases of practigff 4, are

interest. It can be shown that the general form of the small-knot

far-zone vector potential is Ap =0 (20a)
Ap 20 (16a) A, ~ j“TIO 6_:81’ pBa?sin
Ay = j@ p {a’ﬁ’ + g} C_:BT. (16b) : {Jo(a:) + %2 [Jo(z) + JQ(a:)]} (20D)
Using (10a)—(10f), the far-field representations for these small wherez = fccos 6. (20c)

knots can then be determined to be . .
These expressions hold providetly # 2n,p/q # 2n — 1, and

E, ~0 (17a) p/q # (2n —1)/2 wheren € N. Far-zone representations for
the electromagnetic fields in the general case may be obtained

Ey =0 17b
¢ (17b) directly from (20a) and (20b) by making use of (10a)—(10f). The
B~ 1321 sin {GQ N b } e=Ior (170) resulting far-field expressions are
4 2 r
H ~0 174 E.~0 (21a)
" (17d) Ey~0 (21b)
32] : 2 —jBr )
Hy = —ﬂp a® + rle (17e) B2y eI,
4 2 r E, =~ 7 — pa” sinf
H, ~0. (17f) ! o2
We note here the fact that the far-zone representations given
in (17a)—(17f) are independent efor ¢. Hence, under these H, ~0 (21d)
conditions, the far-zone expressions for the elliptical torus knots ) i
are the same as those derived for the circular torus knots in [11]. H, ~ N O pa?sin 6
It was shown in [11] that (17a)—(17f) are equivalent to the far 4 T )
field that would be produced by an electrically small loop with ) a”
an effective radiug. and number of turnév given by Jolz) + 2 [o(@) + Jo(w)] (21e)
2 H,=~0. (21f)
e =1\ a? + 5 (18a)
N =p. (18b) 2) Special Case Wheryq = (2n —1)/2: The closed-form

expressions for the vector potential in this case whehe =
(2n — 1)/2 andn € N are given by
C. Small-Knot Approximatiort:(is Independent of andb) o
The next special case that will be considered is that in which Ay zj“—lo e /3a2g sin # cos fsin <2<p + p z/;)
the horizontal radiiz andb of the torus are small in comparison 4 2 4
to the vertical radius. In this instance, we létbe proportional ’ [(21’ + ) 2p+a)/a(®) +(2p - Q)J(2pfq)/q($)]
to a such thath = «a where0 < o < 1/2. We also make (22a)
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Fig. 3. The geometry for a trefoil formed by a (3, 2)-torus knot.

.NIO e—j,@r

A, %‘IT Ba’siné

T a2
Ao o) + 5 (o) + )]
+ cos <2<p + Zp z/;)
q
) [pa (Vepra/a(®) + J2p—qy/4(@))
&
+ a5 (Jepra/a(®) - J<2pq>/q(w))}} (22b)
and the corresponding far-field representations are

E,.~0 (23a)

321y ¢=iPr 2

~ nlo 7 a2 sinf cosfsin <2<p + = z/;)

4 T 2 q

(2P + O 2pra)/a(£) + (20 — O 2p—q) /()]
(23b)

Ey

32] —j8r
B, ~ 77[4—0 ¢ a’sin 6
r

. {p [.]0(37) + %2 (Jo(z) + ,]2(33))}
+cos |20+ —
(o)
' [po‘ (Vep+a/a(@) + Jizp—qy/q(#))

+q % (J(2p+q)/q(37) - J(2p—q)/(1($))} }

(23c)
H, ~0 (23d)
2 —jBr
H, %—/3 foe a?sind
4 T
CYQ
A [ o) + 5 (o) + )]
+ cos <2<p2—pz/))
q

[P0 (Taprara(®) + Jiapgy/a@))

+ q% ('](217-1-'1)/'1(“7) - '](217—'1)/'1(“7))} }
(23e)

985

321 ¢=IPT 2
Hgﬁz/—OC—an sin & cos 8 sin 2<p—|——pz/)
4 T 2 q

[@p+ DT praysa(@) + Cp — O T 2p—gy /g (x)] -
(23f)

The geometry for the special case in whigh= 3 andg = 2
(i.e.,p/q = 3/2) is illustrated in Fig. 3. It can easily be seen
that the (3, 2)-torus knot shown in Fig. 3 is a trefoil. We make
the observation here that even though the (2, 3)-torus knot and
the (3, 2)-torus knot are topologically equivalent, they do not
produce the same radiated or scattered fields. This can be seen
by comparing (21a)—(21f) with = 2 to (23a)—(23f) withp = 3

andqg = 2.

D. Circular Loop and Linear Dipole

1) Circular Loop: For the special case whén= ¢ = 0 and
p = 1, the torus knot parameterizations defined in (2a)—(2c)
describe a circular loop of radius Hence, the general vector
potential expressions for thép, g)-torus knots derived in
(7a)—(7c) will reduce to the well-known classical results for the
circular loop antenna given by [17]

ind 27 —jBR
A= Wj;n /0 L(¢)sin(p — ¢)° 7 W (249)
pacosf [T . LeTiPR
Ay = I _ do'  (24b
0= /0 (') sin(p — ¢')—p—de’" (24b)
27 —j8R
I’La ! ! € !
A, =— I — 24
¢ =1 /0 s(¢) cos(p — @) —p—dyp (24c)
where
R =1/r24 a2 — 2arsinf cos(p — ¢'). (24d)

2) Linear Dipole: In addition to the circular loop, the linear
dipole can also be obtained as a degenerate case of the elliptical
torus knot parameterizations. To demonstrate this, suppose we
leta = b = 0, then the expressions for the vector potential
components given in (7a)—(7c) reduce to

27 —JiBR

A, = NZOSQ qc/ I,(s") cos(yp + qs’)e ds' (25a)
4 0
. 2 —jBR
Ag :—NZI::Q qc/ I(s) Cos(z/)—i—qs’)6 7 ds’ (25Db)
0
A, =0. (25¢c)
By making the change of variables

Z =csin(y + qs’) (26a)
dz' = qccos(ap + qs') ds’ (26hb)

with ¢ = 1/2 andy = —= /2, (25a) and (25b) may be written

as
pcosf  [€ ,LeTIPR
A, = I, (z 2 27
i /_c s(2)) 7 dz (27a)
psing € e IR
Ay =— I.(2)———d7. 27b
o=t [ L g @
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Fig. 4. Top and side views of an elliptical (2, 3)-torus knot (i.e., a trefoil).

Transforming from spherical coordinates to cylindrical coordi-
nates yields

A= [ 1) (28a)

where
R=+/(z—2)% 4 p? (28b)
p=vx%+y2. (28¢)

This is the well-known classical result for the vector potential
of a z-directed linear dipole of lengthc [14].

V. RESULTS

Fig. 4 shows a top and side view of an elliptical trefoil knot.
Top and side views of a piecewise-linear thin-wire model of
this trefoil have also been included for visualization purposes in
Fig. 5. The trefoil is assumed to be constructed from perfectly
conducting wire with an arclength of 41.416 mm and a radius
of 5.528 x 10=2 mm. The parameters which describe this knot
were chosen such that= 2, ¢ = 3, « = 1/4, andy = 4.

A procedure for calculating the scattering cross section of thin
knotted wires was outlined in [11]. This procedure makes use of
the well-known equation for scattering cross section given b)g

[V

5

el

(a)

(b)

(c)

ig. 5. Top and side views of a thin-wire method of moments model for the
lliptical trefoil shown in Fig. 4.

o = 4drr? 5 (29)

T

ol

in Figs. 4 and 5. A linearly polarized plane wave with an inten-
sity of 1 V/m is assumed to be incident on the knot. The cor-
responding scattering field is determined using a rigorous nu-
merical analysis procedure based on the method of moments.

where £t and E° represent the incident and scattered electrithe piecewire linear segmentation used to construct the method
fields, respectively. Suppose we consider the trefoil knot showhmoments model of the elliptical trefoil knot is clearly visible
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Fig. 6. Backscatter cross section versus frequency for the elliptical (2, 3)-torus knot illustrated in Figs. 4 and 5. A linearly polarized plaresswaved to be
incident on the knot traveling in the (a) positivedirection with the electric field parallel to the-axis, (b) positivez direction with the electric field parallel to
the y-axis, (c) positivey direction with the electric field parallel to the-axis, (d) positivey direction with the electric field parallel to theaxis, (e) positiver
direction with the electric field parallel to the-axis, and (f) positive: direction with the electric field parallel to theaxis.

in Fig. 5. Fig. 6 contains several plots which illustrate how thiarization, and angle of incidence. An inspection of the plots
backscatter cross section of this knot depends on frequency, glsewn in Fig. 6 reinforces earlier observations made in [11]
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Fig. 7. Magnitude of the backscattered field in V/m versus frequency for an elliptical (2, 3)-torus knot with an arclength of 1.5 m. A linearly itarizave
is assumed to be incident on the knot traveling in the positideection with the electric field parallel to the or y-axis.
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Fig. 8. Relative phase of the backscattered field in degrees versus frequency for an elliptical (2, 3)-torus knot with an arclength of 1.5 m.pblimizady
plane wave is assumed to be incident on the knot traveling in the positirection with the electric field parallel to the or y-axis.

which suggested that trefoil knots experience a strong field cq@; 3)-torus knots. Namely, there exists a region above the first
pling for all possible polarizations and angles of incidence. resonance where the phase of the backscattered field with re-
We next compare the on-axis backscattering characteristgggect to the incident field is very close to zero degrees. This
of an elliptical (2, 3)-torus knot with those of a circular (2js particularly true of the elliptical (2, 3)-torus knot, where the
3)-torus knot that has an equivalent arc length of 1.5 m. Figsrélative phase remains close to zero degrees over a fairly wide
and 8 show the magnitude and phase, respectively, of the standwidth, ranging from about 175 MHz to at least 475 MHz
tered field as a function of frequency produced by the ellipticééee Fig. 8). This suggests that elliptical torus knots with this
trefoil. On the other hand, Figs. 9 and 10 show the same gebperty may also have application to the synthesis of broad-
of plots for the corresponding circular trefoil. An inspection oband artificial magnetic media [18], [19].
these plots reveals a particularly interesting feature in the phas®ne of the most important advantages of elliptical torus knots
response that is characteristic of the scattered field produced$that their geometry can be controlled in such a way that they



WERNERet al. ELECTROMAGNETIC FIELDS OF ELLIPTICAL TORUS KNOTS 989

0.25 =T T T L T T T T T

0.2

Magnitude (V/m)
o

&
T

o
-
T

0.05-

) 1 1 ! L

1 1 1
?50 200 250 300 350 400 450 500 550 600 650
Frequency (MHz)

Fig. 9. Magnitude of the backscattered field in V/m versus frequency for a circular (2, 3)-torus knot with an arclength of 1.5 m. A linearly pcaaezed\s
is assumed to be incident on the knot traveling in the positideection with the electric field parallel to the or y-axis.
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Fig. 10. Relative phase of the backscattered field in degrees versus frequency for a circular (2, 3)-torus knot with an arclength of 1.5 m. Adinzediplpoe
wave is assumed to be incident on the knot traveling in the positdieection with the electric field parallel to the or y- axis.

behave more like a loop in one extreme and more like a dipdaler the relationship between the topology of the knots and the
in the other extreme. Hence, depending upon the applicatiorgaresponding scattered fields. One approach for doing this has
proper balance between the loop and dipole characteristics dfeen suggested in [20], where structures based on toroidal links
particular elliptical torus knot presumably could be found. Thiare introduced for the purpose of emphasizing topological rela-
kind of flexibility is not possible with the circular torus knotstionships over geometrical ones.
considered in [11], which can be made to have radiation and
scattering characteristics close to a loop, but not a dipole.
Finally, we note that up to this point we have primarily fo-
cused on how the scattering from torus knots is affected by theirA useful set of parameterizations were introduced in this
geometrical structure. However, it may also be of interest to cauaper for elliptical (p, ¢)-torus knots. This family of knots

VI. CONCLUSION
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derive their name from the fact that they reside on the suvtultiplying both sides of (37) by?¥* and integrating with re-
face of a torus which has an elliptical cross section. Thespect tou leads to

parameterizations allow more flexibility in controlling the

shape of the knots when compared with those previously ju

considered in [10] and [11]. In fact, this paper demonstrate;?[

that the parameterizations for circular torus knots originally” “t

introduced in [10] and [11] are actually a special case of the

loutsinul gy, — Z Jk(a:)/ R gy (38)

k=—cc w1

more general elliptical torus knot parameterizations. Near-zoReom (35) and (38), it follows that

as well as far-zone expressions were derived for the vector
potential and electromagnetic fields produced by elliptical

(p, ¢)-torus knots comprised of thin perfectly conducting wirel(v, z) =

Several convenient closed-form expressions were found for
the far fields of electrically small elliptical torus knots. It was
also shown that the circular loop as well as the linear dipole
geometries may both be obtained as degenerate forms of the
parametric representations for elliptical torus knots. Finally, a
rigorous numerical modeling technique based on the method
of moments was used to evaluate the scattering properties of
several elliptical torus knots.

APPENDIX

In this appendix, a methodology is presented for evaluating
integrals of the type

s
I{v, z) = / cos(vu + z sinu) du

wa
]k(a:)/ el (vHh)u du}
w

_ k_izo T(z) /:2 cos [(v + k)u] du
= kioo Ji () [Sin o k)“il ——k Z‘in e k)ul]} .

(39)

Finally, by substituting the appropriate values:gf = 0 and
(30) u2 = 2mq into (39), we arrive at

o2nq_y(z), vel
where I(v, z) = {qu (@) z Zl. (40)
n
v=—,n€l and g&N (31) A closed-form solution to the related integrals
z = fBccosd (32) s
u; =0 (33) I(v, —z) = / cos(vu — zsinu) du (41)
uy = 27q. (34) 1
may be obtained directly from (40) as
These integrals are encountered in the process of deriving the
far-zone representations for the vector potential components 2mqJo(z), veEl
Ay and A, considered in Section IV-C. The first step toward I(v, —x) = {07 vl (42)

finding a closed-form solution to (30) is to recognize that since
v andz are real valued quantities (i.e.,« € R), we may write
(1]

"2 . .
I(U, .T) =R {/ C][’Uu-l—l‘ sin u) du} .
’ 2]

Next, we make use of the generating function for Bessel func-
tions [21]

(35)

(3]

TN = N (a)tt,  t#£0. (36)
k=—o0 [4]
. - . (5]
Settingt = ¢’* in (36) gives
(6]
- [71
Cj.’L‘ sinu _ Z Jk(x)ejk“'_ (37)

k=—oc0
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